
Tetrahedron Letters,Vol.25,No.21,pp 2253-2254,1984 0040-4039/84 \$3.00 + .00 Printed in Great Britain ©1984 Pergamon Press Ltd.

NOVEL PHOTOISOMERIZATION OF SPIRODIENONES

T.R. Kasturi , K.B. Ganesha Prasad, G. J. Raju and V. Ramamurthy Indian Institute of Science, Bangalore-560012, India.

<u>Abstract</u>: Spironaphthalenones of the type $(\underline{1})$ have been demonstrated to undergo isomerization to (2) upon UV irradiation.

2,4-Cyclohexadienones have been established to undergo 1,6-bond cleavage upon photolysis^{1,2}. On the other hand, 6,6-spiroepoxy-2,4-cyclohexadienone is reported to result in aromatization via β C-0 bond cleavage upon excitation³. Here, we report a novel photoarrangement of spironaphthalenones [(<u>1</u>) and (<u>2</u>)] involving β C-0 bond cleavage; rearrangement of such type is not common.

The spironaphthalenones (<u>lb-li</u>) and (<u>2b-2i</u>) were prepared⁴ by the oxidation of the corresponding substituted β -naphthols with <u>o</u>-chloranil in benzene. Compounds (<u>la</u>) and (<u>2a</u>) were prepared⁵ by the oxidation of 1-(2'-hydroxy-phenoxy)-2-naphthol with <u>o</u>-chloranil in benzene.

Photolysis of benzene solution (0.002-0.004M) of $(\underline{1})$ and $(\underline{2})$ were carried out in pyrex tubes under deareated conditions using 450 W medium pressure mercury lamp. Results are presented in the table. Inspection of the table reveals that $(\underline{1a-lg})$ readily photoisomerize to $(\underline{2a-2g})$ in near quantitative yield. On the other hand, spironaphthalenones $(\underline{1h})$ and $(\underline{1i})$ photoisomerize to $(\underline{2h})$ and $(\underline{2i})$ respectively in reduced yields. Similar irradiation of $(\underline{2a+2g})$ did not bring about any change whereas $(\underline{2h})$ and $(\underline{2i})$ rearranged to $(\underline{1h})$ and $(\underline{1i})$ respectively. The photosiomerization is believed to originate from the lowest excited singlet state, as triplet quenchers such as naphthalene ($E_T=61$ Kcal/mole) and cyclohexadiene (52 Kcal/mole) failed to quench the photorearrangement in the case of $(\underline{1b})$ and $(\underline{1g})$.

2253

Isomeric spirodienones	extent of isomerization (st)	
	$(\underline{1}) \longrightarrow (\underline{2})$	$(\underline{2}) \rightarrow (\underline{1})$
<u>La</u>) and $(2a): R_1 = R_2 = R_3 = R = H$	100	0
<u>lb</u>) and (<u>2b</u>): $R_1 = R_2 = R_3 = H$; R=Cl	100	0
Lc) and $(2c)$: $R_1 = R_2 = H$; $R_3 = Me$; $R = Cl$	100	0
<u>ld</u>) and (<u>2d</u>): $R_1 = R_2 = H; R_3 = pr^{i}; R = Cl$	90	0
Le) and (2e): $R_1 = R_2 = bu^t$; $R_3 = H$; $R = C1$	100	0
\underline{t}) and $(\underline{2t})$: $R_1 = R_3 = H; R_2 = bu^t; R = C1$	90	0
Lg) and $(2g): R_1 = CN; R_2 = R_3 = H; R = C1$	95	0
(h) and (2h): $R_1 = OMe; R_2 = R_3 = H; R=Cl$	25	75
$(\underline{1})$ and $(\underline{21})$: $R_1 = Br; R_2 = R_3 = H; R=Cl$	75	25

The photorearrangement could be visualized as occurring through the intermediacy of spirocyclohexadienone of the type $(\underline{3})$ formed by initial β C-O cleavage. Further work, to have a deeper insight into its mechanism is under progress.

<u>Acknowledgement</u>: We wish to thank Mr. V. Ramesh for helpful discussions. One of us (K.B.G.) wish to thank the Department of Atomic Energy for financial assistance.

References:

- G. Quinkert, <u>Angew. Chem.</u> Internat. edn., <u>11</u> 1072 (1972); H. Hart,
 D. A. Dickinson and W. Y. Li, <u>Tetrahedron Lett.</u>, 2253 (1975); G. Quinkert,
 <u>Pure. Appl. Chem.</u>, <u>35</u> 285 (1973); G. Quinkert, F. Cech, E. Kleiner and
 D. Rehm, <u>Angew. Chem.</u> internat. edn., <u>18</u> 557 (1979).
- 2) T. Sala and M.V. Sargent, J. Chem. Soc., Perk. Trans. I, 870 (1981).
- 3) H.D. Becker, T. Bremholt and E. Adler, Tetrahedron Lett. 4205 (1972).
- 4) T. R. Kasturi, T. Arunachalam and G. Subramanyam, <u>J. Chem. Soc. (c)</u> 1257 (1970); T.R. Kasturi and R. Sivaramakrishnan, <u>Indian. J. Chem.</u> <u>16B</u> 668 (1978).
- T. R. Kasturi, K. B. Ganesha Prasad and B. Rajasekhar, <u>Indian J. Chem.</u>, <u>21B</u> 813 (1981).

(Received in UK 29 February 1984)

Table